The Creative Power of Destruction

Ceremony

Franklin College of Arts and Sciences ambassadors (left to right: Abiola Fakile, Omar Martinez-Uribe, Blake Edwards, and myself) with Lydia Babcock-Adams (left) and Dean Alan Dorsey at a groundbreaking ceremony for the University of Georgia Science Learning Center on Tuesday, Aug. 26, 2014 in Athens, Ga.

Today, I ran into a beloved biochemistry professor of mine at the groundbreaking ceremony for UGA’s new Science Learning Center. I told him about a book I’m reading called Life Unfolding: How the Human Body Creates Itself by Jamie Davies and about how Chapter 17 began with a quote off a car bumper sticker: “Support bacteria–they’re the only culture some people have.” This professor had himself proposed his own idea for a car bumper sticker in the introductory biochemistry class he teaches: “HONC if you love biochemistry” (HONC referring to the general rules by which hydrogen, oxygen, nitrogen, and carbon form one, two, three, and four covalent bonds, respectively, in stable organic molecules).

A Double-Edged Sword
I asked him if he had heard about the researchers from Johns Hopkins who have been using modified flesh-eating bacteria as anti-cancer agents. The researchers removed the gene responsible for the production of alpha-toxin (responsible for the breakdown of cytoskeletal structures in living cells) from Clostridium novyi, which thrives in hypoxic conditions, and proceeded to test the attenuated strain in various organisms by injecting spores directly into the tumor site. In each case, the modified bacteria consumed tumor cells while leaving healthy tissue intact. Reading about this research got me thinking about the healing power of destruction at large. Similar to the way in which the Johns Hopkins researchers saw the curing potential of flesh-eating bacteria, so did Marie Curie see the potential for panacea with radium. Upon observing radium’s destructive effects on her own healthy tissue, she reasoned that radium could also be used to destroy infected tissue. And thus the idea of radiation therapy was born (today, safer radioactive substances such as cobalt and cesium are used). Oftentimes, destruction seems catastrophic, devastating, and ultimately tragic. But destruction also holds the power to treat disease, create novel forms of life, and ultimately pave the way for new beginnings.

Life will always find a way.
In the natural world, severe disturbances to terrestrial communities, whether the result of natural disasters or human activity, often lead to a process called ecological succession in which a disturbed area is colonized by a variety of species, which are gradually replaced by other species, which are in turn replaced by still other species in a seemingly interminable circle-of-life cycle. Initially, severe environmental disturbances reduce species diversity, but life eventually reemerges. When this process begins in a practically lifeless area where soil has not yet formed, it is called primary succession. The only organisms initially present are usually prokaryotes and protists, and lichens and mosses are commonly the first macroscopic photosynthesizers on the scene. Soil eventually develops as rocks weather and organic matter from the decomposed remains of the first colonizers begins to accumulate. Once soil is present, lichens and mosses are usually overgrown by grasses, shrubs, and trees that sprout from seeds blown in from nearby areas or carried into the area by animals. Secondary succession occurs when an existing community has been cleared by some disturbance that leaves the soil intact, as in Yellowstone following the 1988 fires. Communities subject to these kinds of disturbances recover more quickly than those in which a disturbance has wiped out most of the native, resident life. Nevertheless, life always resurges.

Fossil evidence indicates that diversity of life has increased after each of the five big mass extinctions, due to adaptive radiations, periods of evolutionary change in which groups of organisms diversify into many new species whose adaptations facilitate the creation and development of new niches in their communities. Several of these radiations gave rise to adaptations that facilitated life on land. The radiation of land plants, for example, is associated with key adaptations, such as vascular systems to support against gravity and waxy cuticles to protect leaves from water loss. Even after events as devastating as mass extinctions, life, resilient as it is, picks up the pieces and begins to rebuild like the phoenix rising from the ashes.

It is a truth universally acknowledged that destruction and creation go hand in hand.
Using a computer simulation, Cardiff University astronomer Scott Balfour and his colleagues have recently reproduced the iconic and aptly named Pillars of Creation, a trio of gas columns located inside the Milky Way’s Eagle Nebula. The pillars themselves are the product of a massive nearby O-type star, but the formation of these star-creating factories has been unclear until now. O-stars are the universe’s largest, hottest stars, which lead very short lives and wreak havoc upon death. Balfour’s simulation shows that O-stars not only initiate the creation of stars in their nearby vicinity but also destroy star-forming clouds by compressing surrounding gas to initiate the birth of stars prematurely.

We are all star dust.
Perhaps the most poignant illustration of the creative power of destruction is the fact that our very existence is predicated upon the occurrence of a very destructive event: the death of a star, which sometimes results in a supernova. In the beginning was hydrogen, the simplest atom that exists. Only a star is capable of synthesizing heavier elements under extreme temperatures and pressures. Near the end of their lives, heavy-mass stars collapse and explode, scattering carbon, nitrogen, oxygen, and other heavy elements across the galaxy. As Carl Sagan famously said, “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, and the carbon in our apple pies were made in the interiors of collapsing stars.” We are literally star stuff. NASA Astronomer Dr. Michelle Thaller eloquently explains the beautifully violent act by which we come into being:

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s